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1 Covering Spaces and Induced Maps of Homotopic Maps

1.1 Covering spaces

Recall from last time that if G is a group acting “nicely” on a space X, then we get
an identification space X/G and a projection map π : X → X/G. We saw that if X is
path-connected and simply connected, then π1(X/G) ∼= G. Here is a new point of view:

Definition 1.1. Given a space X, a continuous function π : X̃ → X is a covering (space)
map and say that X̃ is a covering space (or cover) of X if for all x ∈ X, there exists an
open neighborhood Ux of x such that π−1(Ux) =

⋃
α Ũα, each Ũα is open, Ũα ∩ Ũα′ = ∅,

and π|Ũα
: Ũα → Uα is a homeomorphism.

Example 1.1. If G is a group acting nicely on X, then π : X → X/G is a covering space
map.

Assume X and X̃ are path-connected.1 Then the same proofs as before give the fol-
lowing lifting lemmas.

Theorem 1.1 (path lifting). If p ∈ X and q ∈ π−1(p), then every path σ in X such that
σ(0) = p has a unique lift σ̃ in X̃ such that σ̃(0) = q.

Theorem 1.2 (homotopy lifting). If σ, σ′ are two paths in X from p to p, and σ 'F σ′

rel {0, 1}, thene there exists a unique lift F̃ of F to X̃ such that σ̃ 'F̃ σ̃
′ rel {0, 1}.

Definition 1.2. If π : X̃ → X is a covering space map, and π−1(x) is finite for all x ∈ X
(|π−1(x)| = n ∈ N), then we say that X̃ is an n-sheeted (or n-fold) covering space.

Check that if X and X̃ are path-connected, then this is well-defined.

1If X, X̃ are not path connected, then each component of X will have a path-connected component of
X̃ as its covering space, so we might as well just talk about path-connected spaces.
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Example 1.2. Let fnLS
1 → S1 send e2πix 7→ e2πinx (where n > 0 is an integer). Then

f−1n ({1}) = {1, e2πi/n, e2πi(2/n), . . . , e2πi(n−1)/n}, so |f−1n (1)| = n. Check that fn is a cover-
ing map. Then S1 is an n-fold cover of S1 for any n ≥ 1.

Here, our theorem about orbit spaces doesn’t apply, but (fn)∗ : Z→ Z sending 1 7→ n
is an induced homomorphism between the fundamental groups. Note that the quotient
π1(S

1, 1)/(fn)∗(π1(S
1, 1)) ∼= Z/nZ, which has order n.

1.2 Induced maps of homotopic maps

Theorem 1.3. If f, g : X → Y and f 'F g, then g∗ : π1(X, p)→ π1(Y, g(p)) is equal to

π1(X, p) π1(Y, f(p)) π1(Y, g(p)),
f∗ γ∗

where γ : [0, 1]→ Y is the path γ(x) = F (p, x).

Proof. Let α : [0, 1]→ X with α(0) = α(1) = p be a path. Then g∗([α]) = [g ◦ α] , and

γ∗(f∗([α])) = γ∗([f ◦ α]) = [(γ−1 · (f ◦ α) · γ)].

We want to show that these two are equal. Let G : [0, 1] × [0, 1] → Y send (x, t) 7→
F (α(x), t). Drawing x on the horizontal axis and t on the vertical axis, we have the
following picture for G:
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Now define H : [0, 1]× [0, 1]→ Y according to the following picture:2

Then H(x, 0) = γ−1 · (f ◦ α) · γ, H(0, 1) = g ◦ α, H(0, t) = γ(1) = g(p), and H(1, t) =
γ(1) = g(p).

Corollary 1.1. If X and Y are path-connected and X ' Y , then π1(X) ∼= π1(Y ).

Proof. If f : X → Y and g : Y → X are maps such that g ◦ f ' idX and f ◦ g ' idY , then
the previous theorem tells us that (g ◦ f)∗ = g∗ ◦ f∗ = γ∗ ◦ (idX)∗ for some path γ. Then γ∗
and (idX)∗ are isomorphisms, so g∗ ◦f∗ is an isomorphism, as well. Since g∗ ◦f∗ is injective,
f∗ is injective. Additionally, since g∗ ◦ f∗ is surjective, g∗ is surjective. Similarly, f∗ ◦ g∗ is
an isomorphism, so f∗ is surjective, and g∗ is injective. So f∗ and g∗ are isomorphisms.

Example 1.3. S1 ' R2 \ {0}, the cyclinder, and the Möbius strip. So

π1(R2 \ {0}) ∼= π1(cylinder) ∼= π1(Möbius strip) ∼= Z.

Also, the cylinder is isomorphic to S1 × [0, 1], so

π1(cylinder) ∼= π1(S
1)× π1([0, 1])︸ ︷︷ ︸

∼=1

∼= π1(S
1) ∼= Z,

which gives us a consistent answer.

2An explicit formula for H is given in the proof of theorem 5.17 in the Armstrong textbook. These
pictures are also taken from the Armstrong textbook.
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