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1 Covering Spaces and Induced Maps of Homotopic Maps

1.1 Covering spaces

Recall from last time that if G is a group acting “nicely” on a space X, then we get
an identification space X/G and a projection map 7 : X — X/G. We saw that if X is
path-connected and simply connected, then m1(X/G) = G. Here is a new point of view:

Definition 1.1. Given a space X, a continuous function 7 : X — X is a covering (space)
map and say that X is a covering space (or cover) of X if for all z € X, there exists an
open neighborhood U, of z such that 7=(U,) = U. U,, each U, is open, Uy, N Uy = @,
and 7| g U, — U, is a homeomorphism.

Example 1.1. If G is a group acting nicely on X, then 7 : X — X/G is a covering space
map.

Assume X and X are path-connected.! Then the same proofs as before give the fol-
lowing lifting lemmas.

Theorem 1.1 (path lifting). If p € X and q € 7 1(p), then every path o in X such that
c(0) = p has a unique lift ¢ in X such that 5(0) = q.

Theorem 1.2 (homotopy lifting). If o,0" are two paths in X from p to p, and o ~p o'
rel {0,1}, thene there exists a unique lift F' of F to X such that 6 ~p ¢’ rel {0,1}.

Definition 1.2. If 7: X — X is a covering space map, and 77 1(x) is finite for all z € X
(|7=(z)| = n € N), then we say that X is an n-sheeted (or n-fold) covering space.

Check that if X and X are path-connected, then this is well-defined.

_ f X, X are not path connected, then each component of X will have a path-connected component of
X as its covering space, so we might as well just talk about path-connected spaces.



Example 1.2. Let f,,LS* — S! send €2™@ s ¢2™"% (where n > 0 is an integer). Then
fA({1)) = {1, e2m/n 2miR/m) o e2min=1)/n) fgo | f-1(1)| = n. Check that f, is a cover-
ing map. Then S! is an n-fold cover of S! for any n > 1.

Here, our theorem about orbit spaces doesn’t apply, but (f,)« : Z — Z sending 1 — n
is an induced homomorphism between the fundamental groups. Note that the quotient
71 (SY, 1)/ (fn)«(m1(St, 1)) = Z/nZ, which has order n.

1.2 Induced maps of homotopic maps

Theorem 1.3. If f,g: X =Y and f ~p g, then g. : m(X,p) = m1(Y, g(p)) is equal to

m(X,p) —L m(Y, F() =2 m(Y, 9(p),

where 7y : [0,1] = Y is the path v(x) = F(p, x).

Proof. Let o : [0,1] = X with a(0) = a(1) = p be a path. Then g.([a]) =[go o] , and

w(fulla])) = w((foa) = (7" (foa) 7).

We want to show that these two are equal. Let G : [0,1] x [0,1] — Y send (z,t) —
F(a(z),t). Drawing x on the horizontal axis and ¢ on the vertical axis, we have the
following picture for G:

god
 —

foa



Now define H : [0,1] x [0,1] — Y according to the following picture:?

gou
>

\ 7

Then H(z,0) =y ' (foa)-v, H(,1) = goa, H(0,t) = v(1) = g(p), and H(1,t)

v(1) = g(p).

Corollary 1.1. If X and Y are path-connected and X ~Y, then m(X) = m(Y).

Ol

Proof. If f: X - Y and g: Y — X are maps such that go f ~idx and f o g ~idy, then
the previous theorem tells us that (go f). = g« o fi = 740 (idx )« for some path 4. Then ~,
and (idy )« are isomorphisms, so g o f, is an isomorphism, as well. Since g o f, is injective,
f« is injective. Additionally, since g, o fy is surjective, g, is surjective. Similarly, f, o g, is
an isomorphism, so fy is surjective, and g, is injective. So f, and g, are isomorphisms. [

Example 1.3. S! ~ R?\ {0}, the cyclinder, and the M&bius strip. So
71 (R?\ {0}) = 7 (cylinder) 2 71 (M&bius strip) & Z.
Also, the cylinder is isomorphic to S* x [0, 1], so

71 (cylinder) 2 71 (S1) x m([0,1]) = 1 (SY) 2 Z,
~1

which gives us a consistent answer.

2An explicit formula for H is given in the proof of theorem 5.17 in the Armstrong textbook.

pictures are also taken from the Armstrong textbook.
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